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Abstract
At a “clean air” trade winds site in northeastern Puerto Rico, we found an apparent paradox: atmospheric total mercury
(THg) deposition was highest of any site in the USA Mercury Deposition Network, but assimilation into the local food web
was quite low. Avian blood THg concentrations (n= 31, from eight species in five foraging guilds) ranged widely from 0.2
to 32 ng g−1 (median of 4.3 ng g−1). Within this population, THg was significantly greater at a low-elevation site near a
wetland compared to an upland montane site, even when the comparison was limited to a single species. Overall, however,
THg concentrations were approximately an order of magnitude lower than comparable populations in the continental U.S. In
surface soil and sediment, potential rates of demethylation were 3 to 9-fold greater than those for Hg(II)-methylation (based
on six radiotracer amendment incubations), but rates of change of ambient MeHg pools showed a slight net positive Hg(II)-
methylation. Thus, the resolution of the paradox is that MeHg degradation approximately keeps pace with MeHg production
in this landscape. Further, any net production of MeHg is subject to frequent flushing by high rainfall on chronically wet
soils. The interplay of these microbial processes and hydrology appears to shield the local food web from adverse effects of
high atmospheric mercury loading. This scenario may play out in other humid tropical ecosystems as well, but it is difficult
to evaluate because coordinated studies of Hg deposition, methylation, and trophic uptake have not been conducted at other
tropical sites.
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Introduction

Mercury (Hg) is a potent neurotoxin and a pervasive global
pollutant that poses a risk to ecosystem and human health
(Driscoll et al. 2013). Research on environmental cycling
and trophic uptake of Hg has increased greatly over the last
25 years, but most research has focused on mid- and high-
latitude ecosystems; Hg researchers have paid relatively
scant attention to tropical landscapes (Sprovieri et al. 2017).
The tropics merit greater attention because they are a
reservoir for biodiversity and hold about half of the world’s
human population, including groups with diets high in fish,
one of the main pathways of human exposure to Hg. The
tropics may be a hotspot for Hg deposition from the global
pool, even in the absence of point sources (Shanley et al.
2015).

Wet atmospheric Hg deposition in northeastern Puerto
Rico, which receives trade winds from the northeast that
cross mostly open ocean waters and is unimpacted by point
sources, was higher than at any site in the continental USA
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(28 µg m−2 annually in 2005–2007) (Shanley et al. 2015;
Shanley et al. 2008). These studies concluded that high
convective cloud tops that form over the island landmass
scavenge gaseous oxidized mercury (GOM) from the large
pool of GOM known to exist in the upper free troposphere
(Landing et al. 2010, Lyman and Jaffe 2012, Swartzen-
druber et al. 2006). Shanley et al. (2015) suggested that high
Hg wet deposition could occur in other tropical settings
where there is sufficient landmass to generate high con-
vective cloud tops, but there are few data available.

The high Hg deposition was reflected in high stream-
water Hg concentrations, mostly as particulate Hg, at Río
Icacos, a high-elevation watershed (616–844 m) near the Hg
deposition station. Stream particulate THg concentrations
exceeded 100 ng L−1 and dissolved THg reached 5 ng L−1

during high flow periods. High Hg concentrations combined
with high water flux in this rain forest landscape to yield an
annual average stream THg flux at Río Icacos of 54 µgm−2 a−1

(Shanley et al. 2008), more than an order of magnitude
greater than typical temperate sites (Shanley and Bishop
2012). The stream THg flux thus is the same order of
magnitude as wet and dry THg inputs. Thus, despite above
average soil organic matter for a tropical forest (Johnson
et al. 2015), the landscape is relatively ineffective at
retaining Hg.

Most Hg studies in the tropics have focused on Hg-
contaminated sites, such as gold mining and ore processing
sites in the Amazon basin (Fostier et al. 2000; Fadini and
Jardim 2001; Silva-Filho et al. 2006) and Guyana (Howard
et al. 2011). Outside of Puerto Rico, only two studies have
reported on systematic atmospheric deposition measure-
ments for at least a full year: Barbados (Guentzel et al.
2001) and Mexico (Hansen and Gay 2013). A few tropical
studies have reported avian Hg burdens: Hispaniola
(Townsend et al. 2013), Nicaragua (Lane et al. 2013),
Belize (Evers 2008), and Puerto Rico (Burger and Gochfeld
1991; Burger et al. 1992b), but these studies had no asso-
ciated atmospheric deposition monitoring. Limited work in
tropical Africa has focused on Hg in fish in lakes and a large
inland delta wetland (Black et al. 2011 and references
therein). Several authors have investigated Hg methylation
processes in the freshwater tropics, especially in the Ama-
zon basin (Achá et al. 2011; Guimarães et al. 2000; Lázaro
et al. 2016; Mauro et al. 2002; Roulet et al. 2001), but these
studies did not assess trophic uptake.

Despite the high deposition and mobility of Hg at our
Puerto Rican site, two lines of evidence hinted that the Hg
may have a limited effect on the ecosystem. First, a pilot
survey of various aquatic and terrestrial biota suggested that
Hg concentrations were less than those in comparable mid-
latitude species (M. Bank and the authors, unpublished
data). Secondly, only ~0.3% of THg was present as
methylmercury (MeHg) in unfiltered streamwater, a

relatively low fraction (Shanley et al. 2008). The juxtapo-
sition of high Hg deposition and low trophic uptake is not
necessarily at odds, as inhibition of methylmercury forma-
tion will limit uptake (Wiener et al. 2006). However,
landscape conditions at our site appeared to be conducive to
methylation, including year-round warm temperatures
(Murphy and Stallard 2012), above-average soil carbon
(Johnson et al. 2015), ample sulfur availability (Peters et al.
2006), and occurrence of reducing microsites in surface
soils (Hall et al. 2016). The apparent paradox prompted
directed field campaigns to (i) confirm the preliminary
finding of low trophic uptake by assessing Hg in avian
blood, and (ii) investigate Hg(II)-methylation dynamics
within soil and sediment. Our working hypothesis and
rationale for this paper was that low net methylation was
limiting trophic uptake despite high Hg deposition in this
tropical wet forest. With the newly acquired information,
we propose a reconciliation of the apparent paradox of biota
that are exposed to high mercury loading but only sparingly
bioaccumulate it.

Site description

The Luquillo Mountains are at 18°N in northeastern Puerto
Rico, the easternmost island in the Greater Antilles, about
1600 km ESE of Miami, Florida (Fig. 1). Our research site
was within the Luquillo Experimental Forest (LEF) in El
Yunque National Forest. LEF is centered 35 km ESE of San
Juan, and receives airflow off the Atlantic Ocean driven by
northeasterly trade winds. The forest is mountainous, with
peaks and ridges rising from sea level to 1075m a.s.l. The
Hg deposition station was in the northeastern part of the
forest. Most of the soil, stream, and biota sampling took place
in the Río Icacos basin, in the headwaters of Río Blanco, a
few km to the SW of the deposition station on the south slope
of the mountains (Fig. 1). Soils are sandy Inceptisols derived
from the quartz diorite bedrock (Johnson et al. 2015).
However, nearly all soils have aquic properties due to clay-
rich B horizons that impede infiltration (Johnson et al. 2015).

Weather patterns that bring rainfall to Puerto Rico have
marked seasonality (Scholl and Murphy 2014). Annual
rainfall in the Luquillo forest averages 4200 mm (Murphy
et al. 2017; Peters et al. 2006), with highest rainfall from
April through December, and a distinctly drier January
through March. The genesis of precipitation in winter and
spring is trade wind-sea breeze showers from orographic
uplift and frontal systems (Scholl and Murphy 2014).
During summer and fall, the site receives rainfall from deep
convection associated with tropical waves embedded in the
prevailing easterly airflow. Tropical cyclones can produce
heavy and intense rainfall. Mean annual temperature is
24 °C with only a 4 °C annual range in monthly averages.
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Methods

Sediment and soil biogeochemistry

We conducted two discrete sampling and analysis cam-
paigns—one for stream sediment and one for watershed
soils (Fig. 2). In September 2008, as part of synoptic
sampling of the five primary USGS Water, Energy, and
Biogeochemical Budgets (WEBB) program locations
(http://water.usgs.gov/webb/), we collected streambed sur-
face sediment (top 0–2 cm) from three locations along a 2-km

reach of Río Icacos (Fig. 2). In February 2012, we sampled
surface soils (0–10 cm) at three positions along a hillslope
transect—upland (midslope), transition (toeslope), and a
low-lying wetland area within the Río Icacos floodplain
(floodplain). The hillslope transect represented a typical
catena for this watershed, but the floodplain sampling site
was unusual, as most of the channel is flanked by steep
hillslopes. Two sets of duplicate soil samples were collected
at each transect point. We focused on 0–10 cm soils for this
study based on findings at a nearby site, where anaerobic
respiration and potential Fe(III) reduction (factors poten-
tially linked to Hg(II) methylation), were greatest in near-
surface soils and decreased with depth as a consequence of
C limitation (Hall et al. 2016). The hydrology and geo-
morphology of this catena are described in detail by
McDowell et al. (1992).

Streambed sediment and one set of soil duplicates were
transferred into acid-cleaned glass mason jars. All jars were
filled to the top to exclude oxygen, stored chilled, and
shipped overnight to the USGS laboratory in Menlo Park,
California, for further sub-sampling under anoxic condi-
tions (Marvin-DiPasquale et al. 2008) for methylation/
demethylation incubations, and for several Hg and bio-
geochemical parameters (Bradley et al. 2011; Hall et al.
2013; Hall and Silver 2015; Marvin-DiPasquale et al. 2008)
(Table 1). Sediment/soil parameters determined in Menlo
Park included THg, MeHg, reactive Hg (Hg(II)R), total
reduced sulfur (TRS), microbial sulfate reduction rate
(SRR), percent mass loss-on-ignition (%LOI), and solutes
in 0.45-µm-filtered porewater (collected by centrifugation)
(Table 1).

The second set of replicate soil samples was collected
primarily to determine Fe speciation. Extractions were
initiated in the field and completed within two hours to
minimize potential changes in soil Fe speciation associated
with changes in redox conditions. Soil subsamples were
extracted in solutions of 0.5M HCl (1:10 ratio, soil:Fig. 1 Map of sampling sites and location within Puerto Rico

Fig. 2 a MeHg concentrations in
soils (topmost 10 cm) and
streambed sediment (topmost
2 cm) along a transect from
hillslope to stream; b MeHg vs.
loss-on-ignition (LOI) in soil
and streambed sediments. LOI
was used because %C was not
measured on streambed
sediment (but see Fig. A-1)
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extractant) and 0.2M sodium citrate/0.05M ascorbic acid
(1:30 ratio, soil:extractant). HCl extractable Fe fractions
included both ferrous iron (Fe(II)HCl) and ferric iron Fe(III)HCl.
The citrate-ascorbate Fe fraction was used to calculate short-
range-ordered Fe (FeSRO, Table 1), as modified from Hall and
Silver 2015). Dried and ground subsamples were extracted in
a citrate-dithionite solution (1:60 ratio, soil:extractant) to
determine total extractable Fe (FeT), from which crystalline
Fe (Fe(III)C) was calculated by subtracting FeSRO (Table 1).
We determined percent carbon (%C: assumed equal to %
organic carbon based on soil acidity) on these samples by
combustion on an elemental analyzer, and we also measured
soil-atmosphere methane (CH4) fluxes via static chambers
(following Hall et al. 2013) at each soil-sampling site as an
additional proxy for anaerobiosis. See supplementary OR
material for detail on the trace gas sampling.

Hg methylation and demethylation incubations

Incubations were initiated within 24–48 h of sampling. For
both streambed sediments and soils, methylmercury pro-
duction rate constants (kmeth) and calculated potential (MPP)
rates were assessed via stable isotope (200Hg2+) amendment
with 22-hr bottle incubations (streambed sediment) or 5-hr
bottle incubations (soils). The shorter incubation time for
soils was in anticipation of higher MPP rates. Each site-
specific sample set consisted of duplicate incubated samples
plus one killed control (flash frozen immediately after iso-
tope amendment). The final 200Hg(II) amendment con-
centration was approximately 50 ng g−1 sediment wet
weight, which for the three Río Icacos stream sites was
equivalent to 66–69 ng g−1 dry wt., or more than an order of
magnitude higher than the native THg concentration for
these sandy stream samples (1.6–4.2 ng g−1 dry wt). For the
soils, the final 200Hg(II) amendment concentration was
74–105 ng g−1 dry wt., which was quite similar to the native
THg concentration (44–144 ng g−1 dry wt.). Because 200Hg
(II) amendments were not at trace levels relative to native
THg pools, the MPP incubation should be regarded as a
‘potential rate’ determination. The resulting end-product
(Me200Hg) was quantified by isotope dilution ICP-MS
(Marvin-DiPasquale et al. 2011). Final concentrations were
determined for each sample by subtracting the (nearly
negligible) killed-control value for each site from the two
incubation values.

In like manner, we assessed MeHg degradation rate
constants (kdeg) and calculated mercury degradation poten-
tial (MDP) rates on soils only by incubating for six days
after amendment with Me201Hg (1.6–2.2 ng g−1 dry wt.,
compared to native MeHg concentrations of 0.2–0.8 ng g−1

dry wt.), and determining rates from the loss of Me201Hg
over time. The longer incubation time improves the chance

of detecting loss, which is determined by difference. In
addition, we tracked the concentration change in the native
Me202Hg pool in the MDP samples as a measure of net
MeHg production (NMP) (net degradation if negative), as
this isotope was not added as an enriched amendment.

Avian blood sampling

During four days in May 2010 we captured 31 birds for
blood Hg analysis by opportunistic mist netting in three
forest types: elfin woodland near the summit of Mt. Britton
(n= 2); high-elevation palo colorado forest near Río Icacos
gage (n= 17); and low-elevation tabonuco forest near El
Portal (n= 12) (Fig. 1). See McDowell et al. (2012) for a
detailed description of these habitats. We did not target
particular species, but were fortunate to capture birds
representing all five feeding guilds, and all but one indivi-
dual, a black-whiskered vireo (Vireo altiloquus), were
permanent residents. Of the 31 birds, 19 were bananaquits
(Coereba flaveola), a small non-migratory nectarivore that
also consumes flies, beetles, caterpillars, ants, bees, and
spiders (Allen 1961; Stiles and Skutch 1989), mostly from
the undersides of leaves (Cruz 1980). The remaining 12
birds represented seven species, with no more than 3 indi-
viduals of any species. Blood was collected non-lethally
from the brachial vein using 27-gauge disposable needles
and heparin-coated capillary tubes, stored in labeled vacu-
tainers, and frozen within four hr of collection. Birds were
handled under appropriate permits and released unharmed at
the capture site.

We used the nonparametric Proportions (z-test) and
Mann–Whitney Rank Sum Test (U statistic) to test for
differences in Hg among bird populations. We compared
blood THg concentrations of bird populations in the low-
elevation tabonuco forest (n= 17) and the high-elevation
palo colorado forest (n= 12) (for this comparison we
excluded the two birds captured in elfin woodland). To
avoid interspecies differences, we also compared blood
THg in populations of bananaquit in the low-elevation (n=
8) and high-elevation (n= 10) groups.

Because Hg in bird blood is nearly 100% MeHg
(Edmonds et al. 2010; Rimmer et al. 2005), blood was
analyzed for THg only. THg was determined from the entire
sample volume using USEPA method 7473 (EPA 1998) by
gold-amalgamation atomic absorption spectroscopy fol-
lowing thermal desorption. The analytical instrument used
was a Milestone DMA-80 at Biodiversity Research Institute
(BRI), Wildlife Mercury Research Laboratory (WMRL) in
Portland, Maine. Internal lab quality control included initial
calibration and continuing verification, blanks, sample
replication, and analysis of the commonly used certified
reference materials DORM-3 and DOLT-4.

Resolving a paradox—high mercury deposition, but low bioaccumulation in northeastern Puerto Rico



Blood samples were also analyzed for stable isotopes of
C and N at the Boston University Stable Isotope Laboratory
using automated continuous-flow isotope ratio mass spec-
trometry (Michener and Lajtha 2007). The samples were
combusted in a EuroVector Euro EA elemental analyzer.
The combustion gases (N2 and CO2) were separated on a
GC column, passed through a reference gas box and
introduced into a GV Instruments IsoPrime isotope ratio
mass spectrometer; water was removed using a magnesium
perchlorate water trap. Ratios of 13C/12C and 15N/14N are
reported as standard delta (δ) notation and are expressed as
the relative permil (‰) difference between the samples and
international standards (Vienna Peedee Belemnite (V-PDB)
carbonate and N2 in air):

δX ¼ Rsample=Rstandard � 1
� �� 1000ð%�Þ

where X= 13C or 15N and R= 13C/12C or 15N/14N. The
sample isotope ratio was compared to a secondary gas
standard, the isotope ratio of which was calibrated to
international standards. For 13CV-PDB the gas was calibrated
against NBS 20 (Solenhofen Limestone). The 15Nair gas was
calibrated against atmospheric N2 and International Atomic
Energy Agency (IAEA) standards N-1, N-2, and N-3 (all
were ammonium sulfate standards).

Results

Mercury and relevant biogeochemistry of
streambed and soil

The downslope soil transect, from midslope to toeslope to
floodplain, exhibited a progressive decrease in soil % dry
weight (63–47%), and wet bulk density (1.51–1.30 g/cm3),
and a progressive increase in soil porosity (0.57–0.69),
organic content (as %LOI, 9.1–20.1%), %fines (silt+ clay;
40 to 77%), and pH (3.35–3.80) (mean values; Table 1). By
comparison, the sandy (quartz diorite bedrock dominated)
Río Icacos streambed sediment was the most elevated in %
dry weight (76%), wet bulk density (1.81 g/cm3), and pH
(6.37), while having the lowest porosity (0.43), %LOI
(1.5%), and %fines (1%). Across all sites, oxidation-
reduction potentials (as Eh) at the time of sampling were
notably oxic (+400 to +500 mv).

Mean THg concentrations were lowest in the streambed
(2.9 ± 1.3 ng g−1) and much higher in soils, from 50 ± 6 ng g−1

in hillslope soils (n= 4 sites, mid- and toeslope) to 128 ±
16 ng g−1 in the floodplain (n= 2 sites). MeHg concentra-
tions were at or below detection (≤0.01 ng g−1 dry wt.) in
the streambed, 0.31 ± 0.05 ng g−1 (n= 4) in the hillslope,
and 0.74 ± 0.05 ng g−1 (n= 2) in the floodplain (Fig. 2,
Table 1). These values equated to <0.4% MeHg in the

streambed and ranged from 0.55 to 0.68% MeHg in soils.
As a percentage of THg, Hg(II)R was lowest in the flood-
plain (2.3 ± 1.1%) (n= 2) compared to all other soil and
sediment sites (7.1 ± 1.9%, n= 7) (Table 1). THg, MeHg,
%fines, and %LOI were all strongly and positively inter-
correlated, with Pearson r values ranging from 0.987 to
0.998 for the pairwise combinations (Fig. 2; Figure OR1).

Considering the well-oxygenated status of the soils and
sediments sampled, it is not surprising that the biogeo-
chemical metrics associated with microbial sulfate reduction
all suggested minimal to no activity for this terminal het-
erotrophic anaerobic pathway. Specifically, SRRs associated
with anoxic bottle incubations were very low in steam bed
sediment (0.05 ± 0.01 nmol g−1 d−1, n= 3) and hillslope
soils (0.03 ± 0.03 nmol g−1 d−1, n= 4) and higher but still
low in the floodplain (0.60 ± 0.10 nmol g−1 d−1, n= 2).
Bulk substrate TRS was also lowest for the streambed
(0.16 ± 0.01 µmol g−1, n= 3) and hillslope soils (0.27 ±
0.07 µmol g−1, n= 4) and low for floodplain sites (0.87 ±
0.26 µmol g−1, n= 2). Further, porewater SO4

2−/Cl− molar
ratios showed little difference among all sites (means ranged
from 0.11 ± 0.01 for streambed sediment to 0.16 ± 0.13 for
the floodplain), suggesting minimal differences in SO4

2−

depletion, relative to the conservative anion Cl−, among the
various soil/sediment environments. Finally, free sulfide was
not measured in the soil samples but was below detection
(<0.2 µmol L−1) in the streambed samples.

In contrast to sulfur cycling, metrics associated with
microbial iron redox cycling suggest a more active terminal
heterotrophic pathway across the study sites. While con-
centrations do not represent rates, the relative pools of Fe(II)
and Fe(III) give us some sense of a system poised for Fe
cycling, with spatially consistent variation along the study
transect. Specifically, the proportion of 0.5 M HCl-
extractable Fe in the reduced Fe(II) form (%Fe(II)HCl) was
lowest in the streambed (1.5 ± 1.0 mg g−1, n= 3) and
increased from the hillslope (11.6 ± 3.1 mg g−1, n= 4) to
the floodplain (38.6 ± 14.4 mg g−1, n= 4), suggesting
increasing microbial Fe(III) reduction from the streambed to
the hillslope to the floodplain. Similarly, the proportion of
Fe(II) relative to the total extractable Fe pool (via citrate-
dithionite extraction) showed a similar progressive increase
in %Fe(II)/FeT from midslope (0.4 ± 0.0 mg g−1, n= 2), to
toeslope (2.3 ± 0.9 mg g−1, n= 2), to floodplain (17.0 ±
7.3 mg g−1, n= 2) (streambed not sampled). Supporting the
Fe(II) distribution, patterns in CH4 fluxes from soils to the
atmosphere provided complementary evidence for an
increase of anaerobic microsites (i.e., conditions suitable for
Hg methylation) from upslope to the floodplain. CH4 fluxes
were not different from zero (<5 µmol m−2 h−1) at the
midslope and toeslope sites, but floodplain soils had net
positive CH4 emissions of 26–33 µmol m−2 h−1.
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Methylation and demethylation incubations

Average MeHg production rate constants (kmeth), measured via
incubation with the 200Hg amendment, were below detection
(<0.001) at all sites except the floodplain (0.002 ± 0.001 d−1),
as were subsequently calculated MPP rates at all sites
(<4.0 pg g−1 d−1) except the floodplain (4.5 ± 0.9 pg g−1 d−1)
(Fig. 3, Table 1). MPP rates should be considered as an upper
limit, as the initially oxic samples were incubated under
anoxic conditions. In contrast, MDP rates, measured in soils
only, ranged from 7–50 pg g−1 d−1, approximately 2 to 10
times higher than the corresponding MPP rates.

NMP rates, based on 6-day anoxic incubations and the
change in the native Me202Hg pool, were low and generally
increased downslope, but were not significantly different
among sites (Table 1: midslope, 12.8 ± 7.4 pg g−1 d−1; toeslope,
16.0 ± 4.5 pg g−1 d−1; floodplain, 18.5 ± 13.8 pg g−1 d−1).

Bird blood Hg concentrations

Total blood Hg concentrations were quite low, ranging from
0.2 to 32 ng g−1 wet weight, with a median of 4.3 ng g−1

(Fig. 4; Table OR1). Within the total sample population
(n= 29, excluding the two elfin forest birds), Hg con-
centration was significantly greater (Proportions test, p=
0.013) in the low-elevation tabonuco forest (83% of birds
greater than overall population median Hg concentration)
relative to the high-elevation palo colorado forest (29% of
birds greater than overall population median Hg con-
centration) Bird blood Hg in the 19 Bananaquits nearly
spanned the range for the entire 31-bird sample population
and was not different from the overall population (Pro-
portions test, p= 0.663). Three species, with just one
individual each, were either omnivorous (pearly-eyed
thrasher (Margarops fuscutatus) and red-legged thrush
(Turdus plumbeus), both of which consume insects, land
crabs, lizards, frogs, birds, and baby rats) or insectivorous
(black-whiskered vireo). Despite these three individuals
occupying higher trophic level feeding guilds, only the
thrush was considerably above the population median (13.0
vs. 4.3 ng g−1).

To minimize the interspecies effect, we compared
bananaquit populations in the two forest types. As with the
overall population, bananaquits had significantly higher
blood Hg (Mann–Whitney Rank Sum Test, p= 0.009) in
the low-elevation tabonuco forest (median 8.1 ng g−1) than
in the high-elevation palo colorado forest (median 3.1 ng g−1).
The two birds from the high-elevation elfin woodland site (a
bananaquit and a Puerto Rican bullfinch (Melopyrrha por-
toricensis)) had blood THg concentrations well below the
overall sample population median of 4.3 ng g−1. Overall,
Hg concentration in bird blood had a weak but significant
positive correlation with δ15N (Fig. 4; Table OR1).

Discussion

Hg stocks, fluxes, and speciation at LEF

Given the high Hg wet deposition in this tropical wet forest
that receives 2–5 m of rain per year, the relative importance
of dry Hg deposition was an open question. Dry deposition
of Hg in forested landscapes typically is 2–3 times wet
deposition (St. Louis et al. 2001). Measurements from three
years of litterfall in the Luquillo forest indicate that dry
deposition was 1.5 times wet deposition (Risch 2017).
Thus, the combined wet plus dry Hg deposition was quite
elevated. The percentage of THg as MeHg (%MeHg)
averaged only 0.06% in wet deposition (R. Brunette,
Eurofins Scientific, unpubl. data, 2012) and 0.31% in lit-
terfall (Risch 2017). These %MeHg values are well below
global medians of 1.14% for wet deposition and 1.08% for
litterfall (calculated from Shanley and Bishop (2012)).

Forested landscapes typically retain about 90% of
atmospheric THg inputs, leaving 10% or less to run off in
streamflow (Shanley and Bishop 2012). The portion of Hg
that does not run off is retained in watershed soils and
vegetation, and some Hg may also volatilize to the atmo-
sphere (Krabbenhoft et al. 2005). At LEF, Río Icacos had an
unusually low watershed retention (high stream THg
export) (see tabulation in Shanley and Bishop (2012)), but
stream Hg export may have been augmented by legacy Hg
from gold ore processing in the watershed more than a
century ago (Wardsworth 1949). Stream Hg export was
dominated by particulate Hg. As in rainfall and throughfall,
a low percentage of THg was in the MeHg form; %MeHg in
whole water samples, generally dominated by particulate
Hg, was 0.68% (Shanley et al. 2008), similar to %MeHg in

Fig. 3 Potential methylation and demethylation rates in soils and
potential methylation rates in streambed sediment. Most of the
methylation rates shown are the detection limits (marked by star) and
should be considered as an upper bound to the potential rates
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soils. The corresponding global median percentage was
2.8% (calculated from Shanley and Bishop (2012)).

In soils and sediment, the distribution of THg across the
sites was highly correlated with grain size (as %fines, r=
0.98) and organic content (as %LOI, r= 0.99), and MeHg
concentration was also positively correlated with THg (r=
0.99) (Figure OR1), with all of these metrics most elevated
at the floodplain site and lowest in the streambed sediment.
Given the low number of observations (n= 9, including
replicates), a high degree of co-correlation is not surprising.
Anecdotally, we previously measured high MeHg con-
centrations of 7.7 ng L−1 (MeHg/THg= 3.3%) in organic-
rich water in the epiphytic tank bromeliad at LEF (Shanley
et al. 2008), suggesting that Hg, S, and organic C for Hg(II)-
methylation were amply supplied from the atmosphere and
forest canopy and were not limiting Hg(II)-methylation.

A less commonly measured Hg metric is the Hg(II)R
fraction, which has been assessed in a number of studies as
a proxy for chemically labile and microbially available Hg
(II), and is used here and elsewhere (Marvin-DiPasquale
et al. 2009a; Marvin-DiPasquale et al. 2009b; Marvin-
DiPasquale et al. 2014) to calculate MPP rates (in combi-
nation with independently measured values of kmeth). Con-
centrations of Hg(II)R increased with substrate redox
potential (Eh, r= 0.85) and %Hg(II)R decreased with
increasing TRS concentration (r=−0.76), microbial SR
rate (r=−0.72) and kmeth (r=−0.71), similar to patterns
reported in earlier research (Marvin-DiPasquale et al.
2009a, Marvin-DiPasquale et al. 2009b, Marvin-DiPasquale
et al. 2014).

Trophic Hg uptake

Avian Hg blood concentration in Puerto Rican birds was
strikingly low (Fig. 5). The Puerto Rican birds that we were
able to capture by mist netting included mostly frugivores
and nectarivores, which would be expected to have low
body burden Hg, but their blood Hg levels were still at least

a factor of five lower and generally an order of magnitude
lower than birds in comparable feeding guilds at other
tropical and temperate sites (Fig. 5) (Cristol et al. 2008;
Evers and Duron 2006; Jackson et al. 2015; Lane et al.
2013). The extent of Hg bioaccumulation in the Puerto
Rican birds followed the typical pattern of increase with
increasing δ15N (Fig. 4), a proxy for relative position in the
feeding guilds (Cabana and Rasmussen 1994).

Avian blood Hg concentrations in Puerto Rico were
anomalously low not only compared to mainland U.S. birds,
but also compared to other tropical sites, including Belize,
Nicaragua, and Hispaniola (Fig. 5). In Belize, more than
half of 31 species of songbirds sampled had more than an
order of magnitude higher Hg than the Puerto Rican birds
(Evers 2008). Birds in Nicaragua had on average five times
the blood Hg as in our Puerto Rican study, with 71 of 73
individuals having greater blood Hg than the median value
of the 31 birds in Puerto Rico (Lane et al. 2013). In His-
paniola, Townsend et al. (2013) found a strong elevational
gradient of blood Hg concentrations, with generally much
lower values in birds in the lowland (near sea level) rain
forest relative to the high-elevation cloud forest. Among the
13 sites sampled, birds from high-elevation cloud forest
sites (up to 1800 m) had generally an order of magnitude
higher Hg in their blood than at lowland sites, though the
latter still had several-fold higher Hg than the Puerto Rican
birds. Newer 2017 results (unpublished data available from
co-authors Oksana Lane, Biodiversity Research Institute,
Portland, ME, and Wayne Arendt, U.S. Forest Service,
Luquillo, PR), however, show comparable or even lower
bird blood Hg for bananaquits in city parks of coastal Santo
Domingo than in the Puerto Rican mountains.

Though our most-sampled bird was the generally nec-
tarivorous bananaquit, two lines of evidence suggest that
bananaquits in LEF rely considerably on animal food
sources and thus their low blood Hg is not solely a reflec-
tion of low trophic position. LEF is frequently impacted by
tropical cyclones, which limit energetically expensive

Fig. 4 a Bird blood Hg
concentration in 31 birds
sampled in Luquillo
Experimental Forest; b relation
of bird blood Hg concentration
to δ15N in these samples
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nectar production, as was found at similar elevations in
other Puerto Rican forests (Ackerman et al. 1994; Melén-
dez-Ackerman et al. 2000; Pérez et al. 2011). In Jamaica’s
Blue Mountains at a similar elevation to our study, Cruz
(1980) found that invertebrates constituted 24% of the
bananaquit diet. Secondly, the three LEF species of hum-
mingbirds, which rely more strongly on nectar, collectively
have only 3.2% the relative abundance of bananaquits at
LEF (unpublished data available from co-author Wayne
Arendt, U.S. Forest Service, Luquillo, PR). In contrast, the
two hummingbird species in Santo Domingo, where nectar
is plentiful from the urban ornamental plants and introduced
tree and shrub species which constitute 71% of the city’s
arboreal species (Melendez-Ackerman et al., University of
Puerto Rico at Río Piedras, unpubl. manuscript), have
nearly 30% the relative abundance of bananaquit. More
detail on the bananaquit diet is available in the supplemental
OR material.

Aside from bananaquits, the only species common to
sampling efforts in Puerto Rico and Hispaniola was the red-
legged thrush. Only one individual was captured in Puerto
Rico, but its blood Hg matched the very lowest Hg con-
centration of the 41 red-legged thrushes captured by
Townsend et al. (2013) in Hispaniola (Fig. 5). The eleva-
tional gradient in Hispaniola was reversed in Puerto Rico,
where birds had significantly higher Hg at a lower elevation
site, possibly due to a more complex food web and presence
of a nearby wetland. These differences within and across
regions underscore the important role of habitat in trophic

Hg uptake. But it is difficult to evaluate habitat effects
without information on Hg deposition. As Townsend et al.
(2013) noted for the Hispaniola study, atmospheric Hg
deposition monitoring is a critical missing link that makes it
difficult to distinguish the effects of Hg deposition from diet
and other factors.

The literature on biotic uptake of Hg in Puerto Rico is
limited, but some studies from the early 1990s assessed Hg
in fauna in nearby coastal areas of Puerto Rico. Burger et al.
(1992a) reported Hg lower than global averages in a variety
of biota in and adjacent to freshwater-dominated coastal salt
marshes in eastern Puerto Rico, although they had a high
detection limit of 80 ng g−1. Similarly, Burger et al. (1992b)
found that cattle egrets (Bubulcus ibis) in eastern Puerto
Rico had lower Hg than their urban counterparts. In con-
trast, Burger and Gochfeld (1991) found that Hg in tern
feathers on the island of Culebra, Puerto Rico, was com-
parable or higher than in more urbanized areas. The rela-
tively lower Hg in the terrestrial egret is consistent with our
results, whereas Hg in terns is controlled by marine
processes.

Some studies of Hg in fish in Puerto Rico run counter to
our finding of low trophic uptake at LEF, with Hg con-
centrations near consumption advisory levels (Mansilla-
Rivera and Rodríguez-Sierra 2011, Ortiz-Roque and López-
Rivera 2004; Sastre et al. 1999), but these results are either
from marine or contaminated sites. On the other hand, fish
Hg in tropical Africa is well below global averages in lakes
and the large inland Okavango delta wetland, leading Black
et al. (2011) to refer to the “tropical African mercury
anomaly”. Black et al. (2011) did not resolve the anomaly,
but discounted the lack of Hg in atmospheric deposition,
pointing out that modeled Hg deposition on the African
continent was higher than the global average (Selin et al.
2008). While the African anomaly mirrors our Puerto Rican
paradox, a lake in Papua New Guinea (Bowles et al. 2001)
and the Rio Negro in Brazil (Belger and Forsberg 2006) had
much higher fish Hg.

Hg methylation and demethylation on the
landscape

All indicators of methylation in soils and sediment tested in
the LEF ecosystem hovered near our limits of detection.
These include MeHg concentration itself, MPP, and the
kmeth values on which MPP is partly based. MeHg con-
centrations averaged more than an order of magnitude lower
than those in California wetlands (Marvin-DiPasquale et al.
2014) and a diversity of eight stream sites across the con-
tiguous U.S. (Marvin-DiPasquale et al. 2009b). MPP rates
were likewise an order of magnitude lower than those in the
California wetlands but similar to those in the eight U.S.
streams. Our finding of higher MeHg concentrations and

Fig. 5 Hg concentrations in the Puerto Rico birds sampled in this study
compared to Hg concentrations in birds at other tropical sites and the
northeastern USA. Orange: this study (PR= Puerto Rico). Green:
other Caribbean and Central American sites (BEL=Belize, Evers
2008; CR Costa Rica, Biodiversity Research Institute (BRI), Portland
Maine, unpublished data; MEX=Mexico, BRI, unpublished data;
NIC Nicaragua, Lane et al. 2013; Hispaniola data for 3 species
populating the majority of sites along an elevational transect (Town-
send et al. 2013). Blue: northeast USA temperate sites (Jackson et al.
2015)
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MPP rates in floodplain soils compared to stream sediments
supported findings from freshwater stream catchments in
New York and South Carolina, i.e. that both MeHg con-
centrations and MPP rates can be much higher in out-of-
channel sub-habitats compared to in-channel streambed
sediment (Bradley et al. 2011). That study suggested that
the stream channel acts more as a conduit for dissolved and
particulate THg and MeHg traveling via surface and sub-
surface flow from the out-of-channel habitats.

Anoxic microsites

All bed sediments and soils were well-oxygenated when
sampled (Table 1). This condition is typical at LEF despite
high soil water content. In a nearby catchment, Hall et al.
(2013) demonstrated a poor relation between redox status
and soil water content; copious water addition failed to
induce anoxia. However, soil O2 concentration at LEF has
been shown to fluctuate over both short (day to day) and
seasonal time scales, frequently dropping to less than 4%,
i.e. less than 20% of atmospheric O2 (Hall and Silver 2013;
Silver et al. 1999). This variability generates spatial
(microsites) and temporal reducing conditions where both
SRB and FeRB, of which many species are obligate anae-
robes, can thrive (Dubinsky et al. 2010; Hall et al. 2016).
The occurrence of reducing microsites is supported by
previous measurements of pervasive iron and sulfate
reduction in these soils irrespective of short-term moisture
variability (Hall et al. 2016, 2013), as well as appreciable
TRS concentrations, elevated ratios of %Fe(II)/FeT, and
CH4 efflux (Table 1). The presence of highly reduced
groundwater at a nearby floodplain site (McDowell et al.
1992; McDowell et al. 1996) suggests the possibility of Hg
methylation along deeper hydrologic flow paths. However,
activity of Fe-reducing microbes (and presumably other
anaerobes) appeared to be much greater in microsites at the
soil surface, due to increased C limitation with depth (Hall
et al. 2016).

Sulfate reducing bacteria

The methylation process has long been thought to be carried
out by SRB. However, measured SR rates were low across
all study sites (Table 1). If anything, in-situ SR rates in our
oxygenated soils were likely lower than those measured in
the lab under anoxic conditions, since SRB are strict
anaerobes. SR rates at our LEF sites were two orders of
magnitude less than similarly assayed freshwater in mana-
ged and agricultural wetlands in California (Marvin-
DiPasquale et al. 2014) and a diversity of eight stream sites
throughout the continental U.S. (Marvin-DiPasquale et al.
2009b). Solid phase TRS was also one to two orders of
magnitude less than in both the California wetland and

eight-stream studies. Relative to the other four USGS
WEBB watersheds which were concurrently sampled, Río
Icacos bed sediment had a median microbial SR rate that
was an order of magnitude lower and TRS concentration
that was more than 4-fold lower (Table OR2). Further,
streambed porewater sulfate concentrations were low (Table
1) and in the range (<30 µmol L−1) that could limit the
activity of SRB (Lovley and Klug 1986). Finally, the hill-
slope transect lacked the systematic downslope decrease in
the porewater SO4

2−/Cl− molar ratio one might expect if
microbial SR were active and increasing with soil organic
and moisture content.

Iron reducing bacteria

Recent advances in molecular biology have demonstrated
Hg(II)-methylation capacity in a much more taxonomically
diverse array of microbes than previously recognized (Gil-
mour et al. 2013), including iron-reducing bacteria (FeRB)
(Fleming et al. 2006; Kerin et al. 2006). In contrast to SRB,
Fe(III)-reducing bacteria are abundant in terrestrial surface
soils of the LEF (Dubinsky et al. 2010), and Fe reduction
and oxidation occur at significant rates even under non-
saturated conditions in this system (Hall et al. 2013). LOI, %
Fe(II)HCl, and %Fe(II)/FeT each increased downslope from
midslope to the floodplain (Table 1), indicating an increase
in Fe(III)-reduction with increasing soil organic matter. A
corresponding decrease in Fe(III)HCl and Fe(III)SRO, both Fe
(III) fractions that are readily available electron acceptors for
microbial Fe reduction (Hyacinthe et al. 2006; Lovley and
Phillips 1987), imply Fe(III) losses via reductive dissolution
in surface horizons over pedogenic timescales.

The evidence that microbial Fe(III)-reduction is a more
important terminal carbon flow pathway than microbial
sulfate reduction in the sites studied does not necessarily
imply that MeHg production was primarily controlled by
FeRB. However, an FeRB control is supported by strong
correlations of a number of key Hg cycling metrics with Fe
cycling metrics. Specifically, MeHg concentration was
positively correlated with both %Fe(II)HCl (r= 0.85) and %
Fe(II)/FeT (r= 0.77), although %MeHg was not correlated
(p < 0.05) with these same two (or any) Fe metrics. Thus,
while Fe(III)-reduction may be an important microbial
process in these Puerto Rican soils/sediments, and metrics
for Fe(III)-reduction are correlated with those for MeHg
production, the low MeHg concentrations and kmeth (and
MPP) rates suggest that conditions are sub-optimal for
MeHg production.

Demethylation

Considering only MeHg concentrations and kmeth (and MPP)
rates in assessing Hg cycling within a suite of sites can be
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misleading if MeHg degradation plays a significant role in
net MeHg production (Marvin-DiPasquale and Agee 2003;
Marvin-DiPasquale et al. 2003). In the current study, values
of kdeg and MDP exceeded corresponding values of kmeth and
MPP by an order of magnitude (Table 1). Our values of kdeg
were similar to those measured in Everglades (wetland)
flocculent surface sediment (Marvin-DiPasquale and Orem-
land 1998) and somewhat lower than San Francisco Bay
0–4 cm surface sediment (Marvin-DiPasquale and Agee
2003), and much lower than those from a Hg-contaminated
mining site (Marvin-DiPasquale et al. 2000). While the
current results suggest that MeHg degradation exceeded
MeHg production in these PR sites, it is difficult to directly
compare these ‘potential’ rates due to differences in non-
tracer level amendment concentrations and incubation times
(6 days for MDP vs 1 day for MPP). However, NMP rates,
measured over 6 days of anoxic incubation, suggest limited
net positive MeHg production overall (Table 1). Note that as
with measurements of microbial SR rates, MeHg production
was optimized in the laboratory by the anoxic incubation
conditions, in comparison to the more oxic field conditions.
Thus, measured NMP rates should be considered upper
limits for these substrates. More detail on the methylation
experiments is available in the supplemental OR material.

Resolving the paradox

Our resolution of the paradox of high Hg deposition but low
biotic uptake in this tropical wet forest rests on two main
findings: (1) conditions for MeHg production are sub-opti-
mal, i.e. oxic soil and sediment, thus inhibiting to strict
anaerobic bacteria; and (2), potential rates for MeHg degra-
dation are comparatively high. These two factors combine to
limit net MeHg production, which results in low biotic Hg
uptake. To the extent that there is low but measurable MeHg
in the substrate, and low but measurable NMP rates observed
under anoxic incubation conditions, there is some potential
for MeHg production, likely associated with reduced
microsites. However, it is unclear if this limited MeHg pro-
duction is carried out by SRB that exhibit very low rates, or
by FeRB that seem to dominate carbon flow in this setting.

In addition to the low net MeHg production in this sys-
tem, its high rainfall and associated frequent flushing of
watershed soils may limit the residence time of MeHg in the
soil for biotic uptake to occur. In the adjacent Mameyes
watershed, Scholl et al. (2015) determined from deuterium
excess analysis that streamflow was a mix of 75%
groundwater and 25% recent (<1 week old) rainfall. The
latter component represents shallow flow and the short
residence time implies that soils are frequently flushed.
Despite the low MeHg/THg ratio in the stream, the high
THg and water fluxes resulted in MeHg export that is an
order of magnitude greater than the global average

(calculated from Shanley and Bishop (2012)). Thus, the rate
of hydrologic flushing of MeHg may keep pace with its net
production rate in the soil. Moreover, MeHg in streamwater
occurs primarily in the particulate phase (Shanley et al.
2008), which has limited biological availability.

A final factor that may contribute to the low biotic uptake
is biomass dilution. Because of the increasing biodiversity
toward the tropics (Eldridge 1998), MeHg uptake in the
Luquillo forest food web may be distributed across a high
faunal biomass so that the concentration at a given trophic
level (feeding guild) is lowered. Birds at LEF have high
areal biomass density, and energy flows through the avi-
faunal community at a rate that is at least double that in
temperate forests (Wunderle and Arendt 2011). This dou-
bled activity implies a relative dilution of available MeHg
by one-half, so biomass dilution may also be a factor con-
tributing to low bird blood Hg in this ecosystem.

Comparison to other tropical studies

Considering that the primary source of Hg in precipitation at
this Puerto Rican site is GOM from the global pool present at
high altitude, high Hg(II) wet deposition could occur in other
tropical settings where there is sufficient landmass to gen-
erate high rain-forming convective clouds. However, there
are few published studies of Hg in atmospheric deposition or
streams in the tropics. Studies on methylation dynamics in
the tropics have been more numerous, but most field research
has been conducted in lakes and adjacent wetlands in the
seasonally flooded floodplains of the Amazon and Paraguay
River basins (Achá et al. 2011; Guimarães et al. 2000;
Lázaro et al. 2016; Mauro et al. 2002; Roulet et al. 2001). A
common thread of these studies is the importance of per-
iphyton in open waters, wetlands, and adjacent wet forests as
a methylation hotspot. Indeed, Molina et al. (2010) found
that invertebrate food chains based on periphyton were the
longest, with the greatest Hg bioaccumulation. As in our
study, Correia et al. (2012) hinted that microbes other than
SRB may be responsible for methylation in tropical systems.
We found no analog in the literature to our methylation study
in a forested tropical upland.

The existing literature on Hg in the food web in the
American tropics is scant, but shows that unlike this site in
Puerto Rico, bioaccumulation of Hg at other tropical sites is
comparable or even higher than in temperate latitudes. None
of these tropical studies recorded Hg deposition nor inves-
tigated methylation processes. Therefore, it is challenging to
interpret the sources and processes involved in the trophic
transfers of Hg. The Townsend et al. (2013) avian study in
Hispaniola was the most comprehensive in terms of number
of species, individuals, and habitats sampled, and demon-
strated a clear biomagnification of Hg when moving from
coastal rain forest to mountain cloud forest. It is unknown
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whether this shift is due to increased Hg deposition,
increased net methylation, changes in the food web struc-
ture, or some combination of these factors. In our study,
high Hg deposition poses a potential threat to the biota, but
processes acting within LEF work to limit Hg bioaccumu-
lation. Large information gaps remain as to whether ele-
vated atmospheric Hg deposition (as observed in LEF) is
widespread in Puerto Rico and the greater tropics, how
diverse tropical landscapes cycle atmospherically deposited
Hg, and ultimately how much Hg enters tropical food webs
and the extent to which Hg poses a risk to human popula-
tions. Research should be augmented at existing tropical
research sites to link currently uncoordinated investigations
of atmospheric deposition, fluvial transport, methylation
dynamics, and trophic uptake.
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